Fracture, Dissolution, and Cementation Events in Ordovician Carbonate Reservoirs, Tarim Basin, NW China

Author:

Baqués Vinyet1ORCID,Ukar Estibalitz1,Laubach Stephen E.1,Forstner Stephanie R.1,Fall András1

Affiliation:

1. Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, University Station Box X Austin, TX 78713-8924, USA

Abstract

Ordovician carbonate rocks of the Yijianfang Formation in the Tabei Uplift, Tarim Basin, contain deeply buried (>6000 m), highly productive oil and gas reservoirs associated with large cavities (>10 m). Previous workers inferred that large cavities are paleocaves (paleokarst) formed near the surface and subsequently buried. Alternately, caves may have formed by dissolution at depth along faults. Using 227 samples from 16 cores, we document textures and cement compositions bearing on cavity histories with petrographic, high-resolution scanning electron microscopy (SEM), isotopic, and fluid inclusion microthermometric observations. Results show that dissolution occurred at depth and was caused by (1) acidic fluids derived from Middle-Late Silurian and/or Devonian-Permian hydrocarbon generation and maturation, (2) high-temperature fluids, of which some were associated with Late Permian igneous activity, and (3) Mg-rich fluids that accompanied Jurassic-Cretaceous deformation and the formation of partially open fractures and stylobreccias (fault breccias). The relative paragenetic sequence of the structure-related diagenesis suggests seven stages of fracturing, dissolution, and cementation. Mottle fabrics in the Yijianfang Formation contain argillaceous carbonate-rich silt and are bioturbation features formed within the marine environment. Those mottled fabrics differ from clearly karstic features in the overlying Lianglitage Formation, which formed by near-surface dissolution and subsequent infilling of cavities by allochthonous sediment. Mottle fabrics are crosscut by compacted fractures filled with phreatic-vadose marine cements and followed by subsequent generations of cement-filled fractures and vugs indicating that some fractures and vugs became cement filled prior to later dissolution events. Calcite cements in fractures and vugs show progressively depleted values of δ18O documenting cement precipitation within the shallow (~220 m), intermediate (~625 m), and deep (~2000 m) diagenetic environments. Deep (mesogenetic) dissolution associated with fractures is therefore the principal source of the high porosity-permeability in the reservoir, consistent with other pieces of evidence for cavities localized near faults.

Funder

U.S. Department of Energy

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3