Hybrid Techniques for Diagnosing Endoscopy Images for Early Detection of Gastrointestinal Disease Based on Fusion Features

Author:

Ghaleb Al-Mekhlafi Zeyad1ORCID,Mohammed Senan Ebrahim2ORCID,Sulaiman Alshudukhi Jalawi1ORCID,Abdulkarem Mohammed Badiea3ORCID

Affiliation:

1. Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia

2. Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Alrazi University, Sana’a, Yemen

3. Department of Computer Engineering, College of Computer Science and Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia

Abstract

Gastrointestinal (GI) diseases, particularly tumours, are considered one of the most widespread and dangerous diseases and thus need timely health care for early detection to reduce deaths. Endoscopy technology is an effective technique for diagnosing GI diseases, thus producing a video containing thousands of frames. However, it is difficult to analyse all the images by a gastroenterologist, and it takes a long time to keep track of all the frames. Thus, artificial intelligence systems provide solutions to this challenge by analysing thousands of images with high speed and effective accuracy. Hence, systems with different methodologies are developed in this work. The first methodology for diagnosing endoscopy images of GI diseases is by using VGG-16 + SVM and DenseNet-121 + SVM. The second methodology for diagnosing endoscopy images of gastrointestinal diseases by artificial neural network (ANN) is based on fused features between VGG-16 and DenseNet-121 before and after high-dimensionality reduction by the principal component analysis (PCA). The third methodology is by ANN and is based on the fused features between VGG-16 and handcrafted features and features fused between DenseNet-121 and the handcrafted features. Herein, handcrafted features combine the features of gray level cooccurrence matrix (GLCM), discrete wavelet transform (DWT), fuzzy colour histogram (FCH), and local binary pattern (LBP) methods. All systems achieved promising results for diagnosing endoscopy images of the gastroenterology data set. The ANN network reached an accuracy, sensitivity, precision, specificity, and an AUC of 98.9%, 98.70%, 98.94%, 99.69%, and 99.51%, respectively, based on fused features of the VGG-16 and the handcrafted.

Funder

Ministry of Education – Kingdom of Saudi Arabia

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Human-Computer Interaction,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3