Analysis and Optimization of the Vibration and Noise of a Double Planetary Gear Power Coupling Mechanism

Author:

Zhou Weijian1,Zuo Yanyan1ORCID,Zheng Mingyin1

Affiliation:

1. Institute of Noise and Vibration, Jiangsu University, Zhenjiang 212013, China

Abstract

As the key component of a hybrid electric vehicle (HEV), the dynamic performance of the power coupling mechanism is found to have a significant effect upon the vibration and noise of the whole vehicle. In this paper, a dynamic model with rigid and flexible bodies of a double planetary gear power coupling mechanism is established. Then, the characteristics of the bearing constraining forces in time domain and frequency domain are simulated and analysed. At the same time, the finite element model of the housing of the power coupling mechanism is established. Then, the vibration response of the housing is analysed under the excitation of the bearing constraining forces, and the vibration displacement of the housing surface is obtained. Furthermore, based on the vibration displacement of the housing surface, a prediction model of housing radiating noise is established. Then, the radiating noise characteristics of the housing and the acoustic contribution of each panel are analysed. Finally, the free damping structure and new stiffener structure are adopted to optimize the rear end cover of the housing. The optimization model based on the vibration acceleration of the rear end cover surface is established by applying K-S function and response surface method. Then, the optimization model is solved by applying the sequential quadratic programming to obtain the optimal structure of the housing. The optimization results demonstrate that the acoustic power level after optimization is decreased by 3.94 dB, 3.92 dB, 5.59 dB, and 2.84 dB at frequencies of 770 Hz, 870 Hz, 1650 Hz, and 2480 Hz, respectively. Therefore, the optimization effect of the housing structure is obvious, and this can be the theoretical basis and reference for reducing the vibration and noise of the power coupling mechanism.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3