Microstructural and Electrical Properties of Sn-Modified BaTiO3 Lead-Free Ceramics by Two-Step Sintering Method

Author:

Kayaphan Wichita12,Bomlai Pornsuda12ORCID

Affiliation:

1. Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

2. Center of Excellence in Nanotechnology for Energy (CENE), Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand

Abstract

Ba(Ti0.92Sn0.08)O3 lead-free ceramics were prepared using a two-step sintering (TSS) technique. Varying the first sintering temperature T1 (1400 and 1500°C) and the dwell time t1 (0, 15, and 30 min), we obtained dense ceramics which were then soaked at a constant temperature of 1000°C (T2) for 6 h (t2). The structural and electrical properties were investigated. XRD results indicated that all the ceramics showed a pure perovskite phase with tetragonal symmetry. Density and grain size increased with higher T1 temperatures and increased t1 dwell times. Enhanced electrical properties were achieved by sintering at the optimized T1 sintering temperature and t1 dwelling time. At the lower T1 sintering temperature of 1400°C, the dielectric and piezoelectric properties and the Curie temperature of the ceramics were improved significantly by increasing t1 dwell time. Further, increasing the sintering temperature T1 to 1500°C, excellent properties were obtained at t1 = 15 min which then deteriorated when t1 was increased to 30 min. The electrical properties of the sample sintered under the T1/t1/T2/t2 condition of “1500/15/1000/6” showed the best values. For this sample the piezoelectric coefficient (d33), dielectric permittivity (εr), loss factor (tanδ), and Curie temperature (TC) were 490 pC/N, 4385, 0.0272, and 48°C, respectively.

Funder

Prince of Songkla University

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3