Efficient and Secure Biometric-Based User Authenticated Key Agreement Scheme with Anonymity

Author:

Kang Dongwoo1ORCID,Jung Jaewook1ORCID,Kim Hyoungshick1ORCID,Lee Youngsook2ORCID,Won Dongho1ORCID

Affiliation:

1. Department of Computer Engineering, Sungkyunkwan University, 2066 Seoburo, Suwon, Gyeonggido 440-746, Republic of Korea

2. Department of Cyber Security, Howon University, 64 Howondae 3-gil, Impi-myeon, Gunsan-si, Jeonrabuk-do 54058, Republic of Korea

Abstract

At present, a number of users employ an authentication protocol so as to enjoy protected electronic transactions in wireless networks. In order to establish an efficient and robust the transaction system, numerous researches have been conducted relating to authentication protocols. Recently, Kaul and Awasthi presented an user authentication and key agreement scheme, arguing that their scheme is able to resist various types of attacks and preserve diverse security properties. However, this scheme possesses critical vulnerabilities. First, the scheme cannot prevent two kinds of attacks, including off-line password guessing attacks and user impersonation attacks. Second, user anonymity rule cannot be upheld. Third, session key can be compromised by an attacker. Fourth, there is high possibility that the time synchronization trouble occurs. Therefore, we suggest an upgraded version of the user authenticated key agreement method that provides enhanced security. Our security and performance analysis shows that compared, to other associated protocols, our method not only improves the security level but also ensures efficiency.

Funder

Ministry of Education

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Security and Privacy-Based IoT Smart Home Access Control Devices;Wireless Personal Communications;2024-07-18

2. A Lightweight Symmetric Cryptography based User Authentication Protocol for IoT based Applications;PRZEGLĄD ELEKTROTECHNICZNY;2024-01-28

3. A Systematic Security Assessment and Review of Internet of Things in the Context of Authentication;Computers & Security;2023-02

4. Privacy conserving authenticated key settlement approach for remote users in IoT based Telecare Medicine information system;Smart Health;2022-12

5. A Smart Card based Approach for Privacy Preservation Authentication of Non-Fungible Token using Non-Interactive Zero Knowledge Proof;2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta);2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3