A Numerical Investigation of the Precipitation over Lake Victoria Basin Using a Coupled Atmosphere-Lake Limited-Area Model

Author:

Sun Xia1ORCID,Xie Lian1,Semazzi Fredrick H. M.1,Liu Bin1ORCID

Affiliation:

1. Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA

Abstract

By using a coupled atmosphere-lake model, which consists of the Weather Research and Forecasting (WRF) model and the Princeton Ocean Model (POM), the present study generated realistic lake surface temperature (LST) over Lake Victoria and revealed the prime importance of LST on the precipitation pattern over the Lake Victoria Basin (LVB). A suite of sensitivity experiments was conducted for the selection of an optimal combination of physics options including cumulus, microphysics, and planetary boundary layer schemes for simulating precipitation over the LVB. The WRF-POM coupled system made a great performance on simulating the expected LST, which is featured with eastward temperature gradient as in the real bathymetry of the lake. Under thorough examination of diagnostic analysis, a distinguished diurnal phenomenon has been unveiled. The precipitation mainly occurs during the nocturnal peak between midnight and early in the morning, which is associated with the strong land breeze circulation, when the lake temperature is warmer than the adjacent land. Further exploration of vertical velocity, surface divergence pattern, and maximum radar reflectivity confirms such conjecture. The time-longitude analysis of maximum radar reflectivity over the entire lake also shows a noticeable pattern of dominating westward propagation.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3