Polyethylene/Clay Nanocomposites Produced byIn SituPolymerization with Zirconocene/MAO Catalyst

Author:

Panupakorn Pimpatima1,Chaichana Ekrachan2,Praserthdam Piyasan1,Jongsomjit Bunjerd1

Affiliation:

1. Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

2. Chemistry Program, Faculty of Science and Technology, Nakhon Pathom Rajabhat University, Nakhon Pathom 73000, Thailand

Abstract

Two commercial nanoclays were used here as catalytic fillers for production of polyethylene (PE) and linear low-density polyethylene (LLDPE) nanocomposites viain situpolymerization with zirconocene/MAO catalyst. It was found that both types of nanoclays designated as clay A and clay B can improve thermal stability to the host polymers as observed from a thermal gravimetric analysis (TGA). The distribution of the clays inside the polymer matrices appeared good due to thein situpolymerization system into which the clays were introduced during the polymer forming reaction. Upon investigating the clays by X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR), it was observed that the crucial differences between the two clays are the crystallite sizes (A < B) and the amounts of amine group (A < B). The higher amount of amine group in clay B was supposed to be a major reason for the lower catalytic activity of the polymerization systems compared to clay A resulting from its deactivating effect on zirconocene catalyst. However, for both clays, increasing their contents in the polymerization systems reduced the catalytic activity due to the higher steric hindrance occurring.

Funder

Chulalongkorn University

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3