The Contribution of Geomagnetic Activity to Polar Ozone Changes in the Upper Atmosphere

Author:

Huang Cong12ORCID,Huang Fuxiang3,Zhang Xiaoxin1,Liu Dandan1,Lv Jingtian1

Affiliation:

1. Key Laboratory of Space Weather, National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

2. CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China

3. Division of Satellite Meteorological Research, National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China

Abstract

Energetic particle precipitation (EPP) has significant impacts on ozone depletion in the polar middle atmosphere during geomagnetic activity. It is well known that solar ultraviolet (UV) radiation plays an important role in ozone generation. Therefore, it is interesting to compare the contributions of EPP and solar UV to ozone changes in the polar upper atmosphere. In this article, we use the annual average Ap index to denote the annual-mean magnitude of the geomagnetic activity, which is closely correlated with the EPP flux, and the annual average F10.7 index to denote the annual-mean magnitude of the solar radiation, which is somewhat related to the solar UV. We adopt the 5° zonal annual-mean ozone profile dataset to study the statistical characters between the ozone dataset and the Ap, F10.7 indices. Multiple regression analysis shows that the contributions of geomagnetic activity are not negligible and are of a similar order of magnitude as the solar UV radiation in the polar upper atmosphere (above 10 hPa). The results also show that high-speed solar-wind-stream-induced and coronal-mass-ejection-driven geomagnetic activity is of the same order of magnitude. There are interhemispheric differences according to our multiple regression analysis. We discuss the possible causes of these differences.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3