Impact Dynamic Analysis and Rubber Impact-Resistant Design of a Launcher

Author:

Zhao Cunsheng1,Tong Bo1ORCID

Affiliation:

1. College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, Hubei, China

Abstract

To study the influence of the opening process of a naval ship’s weapon launcher on the local strength of the impact-resistant structure, the load and inherent characteristics of the system were analyzed, a finite element dynamic model and theoretical Kelvin–Voigt single degree of the freedom system model were established, the dynamic response properties of the impact-resistant structure under an impact load were studied, and the impact spectrum of the system at different impact load durations was obtained. The results indicated that the first-order vibration period of the impact-resistant structure was much shorter than the impact load duration, and the dynamic amplification coefficient of the system was close to 1. Consequently, a theoretical model of a single degree of the freedom system was established, while the analytically derived displacement spectrum was consistent with the finite element calculation results. Therefore, the dynamic strength check of this impact-resistant structure could be treated as a static problem. According to the static calculation, the maximum stress of the structure occurred at the root of the base, which was 188.3 MPa, exceeds 0.3 times of the material yield stress specified in the military standard. To meet the military standard, a simplified collision model was established with the thickness of the rubber pad as the reference variable, the combined force on the bottom surface of the rubber pad was extracted, and the resulting equivalent displacement was calculated according to Hooke’s law. The range of the rubber pad thickness was determined as 11.6 mm  <  d <  12.5 mm to meet the military standard and not affect the normal firing of the weapon.

Funder

Military Scientific Research Project of Naval Armaments Department

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference26 articles.

1. Simulation research on optimization of submarine underwater launcher reducing noise by decreasing power;J. Zhou;Computer Simulation,2019

2. Review of the present situation and development of acoustic stealth technology for submarines abroad;X. Meng;Ship Science and Technology,2011

3. Simulation and optimization of the opening and closing device on ships based on Adams and Amesim;H. Lai;Chinese Journal of Ship Research,2014

4. Analysis of cylinder buffering device's structure parameters to buffering performance effects;Q. Kuang;Ship Science and Technology,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3