Affiliation:
1. Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain
Abstract
This paper presents a design for the multivariable control of a cooling system in a PEM (proton exchange membrane) fuel cell stack. This system is complex and challenging enough: interactions between variables, highly nonlinear dynamic behavior, etc. This design is carried out using a multiobjective optimization methodology. There are few previous works that address this problem using multiobjective techniques. Also, this work has, as a novelty, the consideration of, in addition to the optimal controllers, the nearly optimal controllers nondominated in their neighborhood (potentially useful alternatives). In the multiobjective optimization problem approach, the designer must make decisions that include design objectives; parameters of the controllers to be estimated; and the conditions and characteristics of the simulation of the system. However, to simplify the optimization and decision stages, the designer does not include all the desired scenarios in the multiobjective problem definition. Nevertheless, these aspects can be analyzed in the decision stage only for the controllers obtained with a much less computational cost. At this stage, the potentially useful alternatives can play an important role. These controllers have significantly different parameters and therefore allow the designer to make a final decision with additional valuable information. Nearly optimal controllers can obtain an improvement in some aspects not included in the multiobjective optimization problem. For example, in this paper, various aspects are analyzed regarding potentially useful solutions, such as (1) the influence of certain parameters of the simulator; (2) the sample time of the controller; (3) the effect of stack degradation; and (4) the robustness. Therefore, this paper highlights the relevance of this in-depth analysis using the methodology proposed in the design of the multivariable control of the cooling system of a PEM fuel cell. This analysis can modify the final choice of the designer.
Funder
Ministerio de Ciencia, Innovación y Universidades
Subject
Multidisciplinary,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献