The Use of a Green Fluorescent Protein Porcine Model to Evaluate Host Tissue Integration into Extracellular Matrix Derived Bionanocomposite Scaffolds

Author:

Smith S. E.1,White R. A.12,Grant D. A.1,Grant S. A.1

Affiliation:

1. Department of Bioengineering, University of Missouri, 254 Agricultural Engineering, Columbia, MO 65211, USA

2. Department of Orthopaedic Surgery, University of Missouri, Missouri Orthopaedic Institute, 1100 Virginia Avenue Columbia, MO 65212, USA

Abstract

When using heterogeneous extracellular matrix (ECM) derived scaffolds for soft tissue repair, current methods of in vivo evaluation can fail to provide a clear distinction between host collagen and implanted scaffolds making it difficult to assess host tissue integration and remodeling. The purpose of this study is both to evaluate novel scaffolds conjugated with nanoparticles for host tissue integration and biocompatibility and to assess green fluorescent protein (GFP) expressing swine as a new animal model to evaluate soft tissue repair materials. Human-derived graft materials conjugated with nanoparticles were subcutaneously implanted into GFP expressing swine to be evaluated for biocompatibility and tissue integration through histological scoring and confocal imaging. Histological scoring indicates biocompatibility and remodeling of the scaffolds with and without nanoparticles at 1, 3, and 6 months. Confocal microscope images display host tissue integration into scaffolds although nonspecificity of GFP does not allow for quantification of integration. However, the confocal images do allow for spatial observation of host tissue migration into the scaffolds at different depths of penetration. The study concludes that the nanoparticle scaffolds are biocompatible and promote integration and that the use of GFP expressing swine can aid in visualizing the scaffold/host interface and host cell/tissue migration.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3