Technical Research on Optimization of Irrigation Canal System Considering Genetic Algorithm

Author:

Wang Yijia1ORCID

Affiliation:

1. College of Architectural Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310000, Zhejiang, China

Abstract

In order to solve the lack of optimization and comparison of the previous schemes in the irrigation and water conservancy project reconstruction, the engineering design and planning are difficult to reach the best state, resulting in water resource waste and other problems. In this paper, genetic algorithm optimization technology of the irrigation canal system is studied, in-depth learning technology of image processing is elaborated, the rectangular optimization model is established, and the optimal nonlinear design of trapezoidal and U-shaped sections of irrigation channel is verified by engineering examples. According to the geographical location, water source, irrigation area, irrigation area, and designer’s experience, two possible irrigation scheme layouts have been determined, and the trapezoidal section has been optimized. The results show that the value of the objective function decreases rapidly with the increase of iteration time. Scheme 1 has stabilized for about 19 generations. Scheme 2 tends to be stable for about 25 generations. The optimization results of the U-shaped section show that scheme 1 is stable for about 43 generations, while scheme 2 tends to be stable for about 60 generations. By comparing the optimal schemes of the trapezoidal section and the U-section, it can be found that the water supply cost of the U-section is low. Therefore, under the condition of layout scheme 2, the U-shaped section is the best scheme. The calculation shows that under the same conditions, the trapezoidal section area is about 45% larger than the U-shaped section area. Although the trapezoidal section is adopted in the original project, the U-shaped section is recommended when construction conditions permit. The optimization method can quickly determine the overall optimization scheme of irrigation channels. The water supply cost depends on the final optimized objective function value, which is used as the reference basis for formulating the water supply price. The optimal design scheme should not only meet the provisions of engineering practice but also meet the requirements of the lowest water supply cost.

Funder

Basic Research and Text Compilation of Sichuan Tongjiang Application for World Irrigation Engineering Heritage

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3