Research on English Achievement Analysis Based on Improved CARMA Algorithm

Author:

Hu Lin1ORCID

Affiliation:

1. Jilin University of Finance and Economics Jilin, Changchun 130117, China

Abstract

This paper uses data mining technology to analyze students’ English scores. In view of the influence of many factors on students’ English performance, the analysis is realized by using the association rule algorithm. The thesis analyzes and applies students’ English scores based on association rules and mainly does the following work: (1) at present, the problem of the CARMA algorithm is low operating efficiency. The combination of the genetic algorithm’s crossover, mutation, and the CARMA algorithm realizes the fast search of the algorithm. The simulation results show that the operation performance of the algorithm is greatly improved after the crossover and mutation operations in the genetic algorithm are applied to the CARMA algorithm. The simulation results show that the mining accuracy of the improved algorithm is 97.985%, and the mining accuracy before the improvement is 92.221%, indicating that the improved algorithm can improve the accuracy of mining. (2) By comparing the mining time of the improved CARMA algorithm, the traditional CARMA algorithm, the FP-Growth algorithm, and the Apriori algorithm, the results show that when the number is 6,500, the mining efficiency of the improved CARMA algorithm is twice that of the other three algorithms. As the amount of data increases, the effect of improving mining efficiency gradually increases. (3) By using the improved CARMA algorithm to analyze students’ English performance, it is found that the quality of student performance is strongly related to the quality of daily homework, and if it is related to the teacher’s gender, professional title, etc., it is recommended that schools should pay more attention to homework during the teaching process.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grades Prediction Through Use of The BP Nerual Network Model;2024 7th International Conference on Advanced Algorithms and Control Engineering (ICAACE);2024-03-01

2. The Information Practice of the Constructive English Learning Platform Based on the Genetic Algorithm;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

3. Research on Informatization Practice of Constructive English Learning Platform Based on RBF Algorithm;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. A novel FCTF evaluation and prediction model for food efficacy based on association rule mining;Frontiers in Nutrition;2023-08-28

5. Apriori algorithm for re-categorization of railway stations;AIP Conference Proceedings;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3