States and Parameters Estimation for Induction Motors Based on a New Adaptive Moving Horizon Estimation

Author:

Talla Ouambo Steve Alan1ORCID,Teplaira Boum Alexandre2ORCID,Moukengue Imano Adolphe1ORCID

Affiliation:

1. University of Douala, Faculty of Science, Douala 24157, Cameroon

2. University of Douala, ENSET, Douala 1872, Cameroon

Abstract

This paper investigates the joint states and parameters estimation problem for induction machine. In order to develop new states and parameters estimation methods that greatly improve the estimation bandwidth, this paper proposes an adaptive moving horizon estimation of the crucial states and parameters of the induction machine. The model of the machine under study is the one taking into consideration the magnetic saturation and the iron losses simultaneously. The estimator used is based on a least squares algorithm but includes a dead zone that ensures robustness and a variable forgetting factor that is based on the constant information principle. The simulation results show that the adaptive estimator can efficiently estimate the states and parameters of the induction machine with a fast convergence rate despite the initial parametric errors.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive horizon size moving horizon estimation with unknown noise statistical properties;Measurement Science and Technology;2024-08-21

2. SCSO-MHEF: Sand Cat Swarm Optimization based MHEF for Nonlinear LTI-IoT Sensor Data Enhancement;International Journal of Electrical and Electronics Research;2024-02-05

3. SCSO-MHEF: Sand Cat Swarm Optimization based MHEF for Nonlinear LTI-IoT Sensor Data Enhancement;International Journal of Electrical and Electronics Research;2024-02-05

4. Model Optimization Strategy Based on Moving Horizon Estimation for Induction Motor;IEEE Transactions on Energy Conversion;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3