Affiliation:
1. University of Electronic Science and Technology of China, China
Abstract
Radio frequency (RF) fingerprint identification is a nonpassword authentication method based on the physical layer of communication devices. Deep learning methods have thrown new light on RF fingerprint identification. In this paper, a conventional neural network- (CNN-) based RF identification model is proposed. The CNN models are designed to be lightweight. Raw data that reflects the characteristics of thechannel, thechannel, and the 2-dimensionaldata is successively fed into a CNN model. Therefore, three submodels are generated. The final predictive labels are determined by the results of the three submodels through a voting scheme. Experimental results have demonstrated that in the SNR setting at 5 dB, the final recognition accuracy of four transmit devices could achieve as high as 97.25%, while the identification accuracies based on thechannel data,channel data, andchannel data are 94.5%, 95%, and 94.5%, respectively. The training time for the 4 devices is around 30 seconds.
Funder
Fundamental Research Funds for the Central Universities
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献