Φ -Haar Wavelet Operational Matrix Method for Fractional Relaxation-Oscillation Equations Containing Φ -Caputo Fractional Derivative

Author:

Sunthrayuth Pongsakorn1ORCID,Aljahdaly Noufe H.2ORCID,Ali Amjid3,Shah Rasool4ORCID,Mahariq Ibrahim5ORCID,Tchalla Ayékotan M. J.6ORCID

Affiliation:

1. Department of Mathematics and Computer Science, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi (RMUTT), Thanyaburi Pathum Thani, Thailand

2. Department of Mathematics, Faculty of Sciences and Arts-Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia

3. Faculty of Science and Engineering, Saga University, Saga, Japan

4. Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan

5. College of Engineering and Technology, American University of the Middle East, Kuwait

6. Département de Mathématiques, Faculté des Sciences, Université de Lomé, 01 BP 1515 Lomé, Togo

Abstract

This paper proposes a numerical method for solving fractional relaxation-oscillation equations. A relaxation oscillator is a type of oscillator that is based on how a physical system returns to equilibrium after being disrupted. The primary equation of relaxation and oscillation processes is the relaxation-oscillation equation. The fractional derivatives in the relaxation-oscillation equations under consideration are defined in the Φ -Caputo sense. The numerical method relies on a novel type of operational matrix method, namely, the Φ -Haar wavelet operational matrix method. The operational matrix approach has a lower computational complexity. The proposed scheme simplifies the main problem to a set of linear algebraic equations. Numerical examples demonstrate the validity and applicability of the proposed technique.

Publisher

Hindawi Limited

Subject

Analysis

Reference39 articles.

1. On the application of the spectral element method in electromagnetic problems involving domain decomposition

2. Collocation methods for fractional differential equations involving non-singular kernel

3. A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations

4. Mathematical analysis of nonlinear integral boundary value problem of proportional delay implicit fractional differential equations with impulsive conditions;A. Ali;Boundary Value Problems,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3