Mechanical Characterization of PDMS Films for the Optimization of Polymer Based Flexible Capacitive Pressure Microsensors

Author:

Dinh T.-H.-N.1ORCID,Martincic E.1,Dufour-Gergam E.1,Joubert P.-Y.1

Affiliation:

1. Centre of Nanosciences and Nanotechnologies (C2N-Orsay), CNRS, Université Paris Sud, Université Paris-Saclay, Orsay, France

Abstract

This paper reports on the optimization of flexible PDMS-based normal pressure capacitive microsensors dedicated to wearable applications. The operating principle and the fabrication process of such microsensors are presented. Then, the deformations under local pressure of PDMS thin films of thicknesses ranging from 100 μm to 10 mm are studied by means of numerical simulations in order to foresee the sensitivity of the considered microsensors. The study points out that, for a given PDMS type, the sensor form ratio plays a major role in its sensitivity. Indeed, for a given PDMS film, the expected capacitance change under a 10 N load applied on a 1.7 mm radius electrode varies from a few percent to almost 40% according to the initial PDMS film thickness. These observations are validated by experimental characterizations carried out on PDMS film samples of various thicknesses (10 μm to 10 mm) and on actual microsensors. Further computations enable generalized sensor design rules to be highlighted. Considering practical limitations in the fabrication and in the implementation of the actual microsensors, design rules based on computed form ratio optimization lead to the elaboration of flexible pressure microsensors exhibiting a sensitivity which reaches up to10%/N.

Funder

LabeX LaSIPS

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Directional Cell Migration Guided by a Strain Gradient;Small;2023-09-22

2. Surface electromyography using dry polymeric electrodes;APL Bioengineering;2023-09-01

3. Synthesis of transparent electrospun composite nanofiber membranes by asymmetric solvent evaporation process;Colloids and Surfaces A: Physicochemical and Engineering Aspects;2023-06

4. PDMS based capacitive flexible sensors sensitivity to ambient conditions;2023 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (DTIP);2023-05-28

5. Assessment of electromechanical performances of PDMS-based flexible capacitive pressure sensors;2023 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS (DTIP);2023-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3