Multiperspective Light Field Reconstruction Method via Transfer Reinforcement Learning

Author:

Cai Lei1ORCID,Luo Peien2ORCID,Zhou Guangfu2ORCID,Xu Tao1ORCID,Chen Zhenxue3ORCID

Affiliation:

1. School of Artificial Intelligence, Henan Institute of Science and Technology, Xinxiang 453003, China

2. School of Information Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China

3. School of Control Science and Engineering, Shandong University, Jinan 250061, China

Abstract

Compared with traditional imaging, the light field contains more comprehensive image information and higher image quality. However, the available data for light field reconstruction are limited, and the repeated calculation of data seriously affects the accuracy and the real-time performance of multiperspective light field reconstruction. To solve the problems, this paper proposes a multiperspective light field reconstruction method based on transfer reinforcement learning. Firstly, the similarity measurement model is established. According to the similarity threshold of the source domain and the target domain, the reinforcement learning model or the feature transfer learning model is autonomously selected. Secondly, the reinforcement learning model is established. The model uses multiagent (i.e., multiperspective) Q-learning to learn the feature set that is most similar to the target domain and the source domain and feeds it back to the source domain. This model increases the capacity of the source-domain samples and improves the accuracy of light field reconstruction. Finally, the feature transfer learning model is established. The model uses PCA to obtain the maximum embedding space of source-domain and target-domain features and maps similar features to a new space for label data migration. This model solves the problems of multiperspective data redundancy and repeated calculations and improves the real-time performance of maneuvering target recognition. Extensive experiments on PASCAL VOC datasets demonstrate the effectiveness of the proposed algorithm against the existing algorithms.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3