Power Allocation for Reducing PAPR of Artificial-Noise-Aided Secure Communication System

Author:

Hong Tao1ORCID,Zhang Geng-xin1ORCID

Affiliation:

1. College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract

The research of improving the secrecy capacity (SC) of wireless communication system using artificial noise (AN) is one of the classic models in the field of physical layer security communication. In this paper, we consider the peak-to-average power ratio (PAPR) problem in this AN-aided model. A power allocation algorithm for AN subspaces is proposed to solve the nonconvex optimization problem of PAPR. This algorithm utilizes a series of convex optimization problems to relax the nonconvex optimization problem in a convex way based on fractional programming, difference of convex (DC) functions programming, and nonconvex quadratic equality constraint relaxation. Furthermore, we also derive the SC of the proposed signal under the condition of the AN-aided model with a finite alphabet and the nonlinear high-power amplifiers (HPAs). Simulation results show that the proposed algorithm reduces the PAPR value of transmit signal to improve the efficiency of HPA compared with benchmark AN-aided secure communication signals in the multiple-input single-output (MISO) model.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Secrecy Energy Efficiency in PAPR-Aware Artificial Noise Scheme for Secure Massive MIMO;2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit);2023-06-06

2. PAPR-Aware Artificial Noise for Secure Massive MIMO Downlink;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3