A New Hybrid MPPT Based on Incremental Conductance-Integral Backstepping Controller Applied to a PV System under Fast-Changing Operating Conditions

Author:

Harrison Ambe1ORCID,Alombah Njimboh Henry2ORCID,de Dieu Nguimfack Ndongmo Jean3ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, College of Technology (COT), University of Buea, P.O. Box Buea 63, Cameroon

2. Department of Electrical and Electronics Engineering, College of Technology, University of Bamenda, P.O. Box 39, Bambili, Cameroon

3. Department of Electrical and Power Engineering, Higher Technical Teacher Training College (HTTTC), University of Bamenda, P.O. Box 39 Bambili, Cameroon

Abstract

Maximum power point tracking (MPPT) is becoming more and more important in the optimization of photovoltaic systems. Several MPPT algorithms and nonlinear controllers have been developed for improving the energy yield of PV systems. On the one hand, most of the conventional algorithms such as the incremental conductance (INC) demonstrate a good affinity for the maximum power point (MPP) but often fail to ensure acceptable stability and robustness of the PV system against fast-changing operating conditions. On the other hand, the MPPT nonlinear controllers can palliate the robust limitations of the algorithms. However, most of these controllers rely on expensive solar irradiance measurement systems or complex and relatively less accurate methods to seek the maximum power voltage. In this paper, we propose a new hybrid MPPT based on the incremental conductance algorithm and the integral backstepping controller. The hybrid scheme exploits the benefits of the INC algorithm in seeking the maximum power voltage and feeds a nonlinear integral backstepping controller whose stability was ensured by the Lyapunov theory. Therefore, in terms of characteristics, the overall system is a blend of the MPP-seeking potential of the INC and the nonlinear and robust potentials of the integral backstepping controller (IBSC). It was noted that the hybrid system successfully palliates the conventional limitations of the isolated INC and relieves the PV system from the expensive burden of solar irradiance measurement. The proposed hybrid system increased the operational efficiency of the PV system to 99.94% and was found better than the INC MPPT algorithm and 8 other recently published MPPT methods. An extended validation under experimental environmental conditions showed that the hybrid system is approximately four times faster than the INC in tracking the maximum power with better energy yield than the latter.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3