Zero-Shot Photovoltaic Power Forecasting Scheme Based on a Deep Learning Model and Correlation Coefficient

Author:

Park Sungwoo1ORCID,Kim Dongjun1ORCID,Moon Jaeuk1ORCID,Hwang Eenjun1ORCID

Affiliation:

1. School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea

Abstract

Accurate photovoltaic (PV) power forecasting is essential for the stable and reliable operation of PV power generation systems. Recently, various deep learning- (DL-) based forecasting models have been proposed for accurate forecasting, but newly built systems cannot benefit from them due to the absence of PV power data. Although zero-shot methods based on single site can be used for PV power forecasting, they suffer from performance degradation problems when the characteristics of the source data and target data are different. To address this issue, we propose a novel zero-shot PV power forecasting scheme that leverages historical data from multiple PV generation systems at different sites. The proposed scheme constructs an individual forecasting model using historical data from each PV generation system. Then, two correlation coefficients are calculated for each forecasting model: one based on the correlation between the input variables of the source data and target data and the other on the correlation between the input variables and output variables of the source data. Lastly, the final forecasting value is calculated as a weighted sum of the predicted values of the constructed forecasting models for the input variables of the target data. In the extensive experiments for diverse DL models for forecasting, correlation coefficient types for weights, and data time intervals, the combination of recurrent neural network, Pearson’s correlation coefficient, and solar-noon time yielded the best prediction performance, with an improvement of up to 34.47% in mean absolute error and up to 15.94% in root mean square error compared to the best single-site zero-shot prediction. In addition, in experiments on PV power data from 9 cities in Korea using this combination, the proposed scheme achieved the best predictive performance in almost all cases and the second-best performance with a very narrow margin only in a few cases.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3