Identification of a Transcription Factor-microRNA-Gene Coregulation Network in Meningioma through a Bioinformatic Analysis

Author:

Wang Juan12ORCID,Liang Yan34ORCID,Yang Hui5ORCID,Wu Jian-Huang34ORCID

Affiliation:

1. Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China

2. Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester Minnesota, USA

3. Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China

4. National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China

5. Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China

Abstract

Background. Meningioma is a prevalent type of brain tumor. However, the initiation and progression mechanisms involved in the meningioma are mostly unknown. This study aimed at exploring the potential transcription factors/micro(mi)RNAs/genes and biological pathways associated with meningioma. Methods. mRNA expressions from GSE88720, GSE43290, and GSE54934 datasets, containing data from 83 meningioma samples and eight control samples, along with miRNA expression dataset GSE88721, which had 14 meningioma samples and one control sample, were integrated analyzed. The bioinformatics approaches were used for identifying differentially expressed genes and miRNAs, as well as predicting transcription factor targets related to the differentially expressed genes. The approaches were also used for gene ontology term analysis and biological pathway enrichment analysis, construction, and analysis of protein-protein interaction network, and transcription factor-miRNA-gene coregulation network construction. Results. Fifty-six upregulated and 179 downregulated genes were identified. Thirty transcription factors able to target the differentially expressed genes were predicted and selected based on public databases. One hundred seventeen overlapping genes were identified from the differentially expressed genes and the miRNAs predicted by miRWalk. Furthermore, NF-κB/IL6, PTGS2, MYC/hsa-miR-574-5p, hsa-miR-26b-5p, hsa-miR-335-5p, and hsa-miR-98-5p, which are involved in the transcription factor-miRNA-mRNA coregulation network, were found to be associated with meningioma. Conclusion. The bioinformatics analysis identified several potential molecules and relevant pathways that may represent critical mechanisms involved in the progression and development of meningioma. This work provides new insights into meningioma pathogenesis and treatments.

Funder

Central South University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3