Analysis and Monitoring Technology of Upper Seam Mining in Multiunderlayer Goaf

Author:

Liang Han1ORCID,Li Pengfei1,Cao Chen1

Affiliation:

1. College of Mining Engineering, Liaoning Technical University, Fuxin 123000, China

Abstract

Based on the background of close coal seam mining in the Qianjiaying coal mine, Tangshan, China, the feasibility of the upper seam mining in complex underlaying goaf is analysed using the roof caving analysis and numerical method. The deformation of the mining seam and roadways is monitored and analysed by field measurement and 3D laser scanning. The deformation characteristics of #5 seam after mining 1378P, 2071P, 2072P, and 2091P working panels with a depth of 39–54 m below the #5 seam are analysed using roof caving analysis and numerical method. Results show that the maximum deformation of #5 seam in the superimposed area of the lower goafs reaches 2.5 m and the maximum deformation in the single coal goaf is 1.5 m. The maximum seam inclination is 1.9°. The subsidence of the floor of 1359P roadways is obtained by field measurement, and the result is consistent with numerical calculation. ZEB-HORIZON 3D laser scanner was used to measure and model the roadway deformation. Based on the analysis of multiple scanning data, the deformation of the 1359P roadways was obtained. Results show that the deformation of the surrounding rock of the roadway is not great, the maximum displacement of the roof fall is 30 mm, and the maximum rib convergence is 25 mm. It can be concluded that the #5 seam can be recovered in this complex underlying lower seams’ mining condition.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3