Affiliation:
1. Department of Mathematics, Shanghai University, Shanghai 200444, China
2. School of Mathematics and Science, Shijiazhuang University of Economics, Shijiazhuang 050031, China
Abstract
LetP∈Cm×mandQ∈Cn×nbe Hermitian and{k+1}-potent matrices; that is,Pk+1=P=P⁎andQk+1=Q=Q⁎,where·⁎stands for the conjugate transpose of a matrix. A matrixX∈Cm×nis called{P,Q,k+1}-reflexive (antireflexive) ifPXQ=X (PXQ=-X). In this paper, the system of matrix equationsAX=CandXB=Dsubject to{P,Q,k+1}-reflexive and antireflexive constraints is studied by converting into two simpler cases:k=1andk=2.We give the solvability conditions and the general solution to this system; in addition, the least squares solution is derived; finally, the associated optimal approximation problem for a given matrix is considered.
Funder
Education Department Foundation of Hebei Province
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献