Biological Impact of Exposure to Extremely Fine-Grained Volcanic Ash

Author:

Aguilera Cristina1,Viteri Marco1,Seqqat Rachid12ORCID,Ayala Navarrette Ligia1,Toulkeridis Theofilos1,Ruano Ana3,Torres Arias Marbel12ORCID

Affiliation:

1. Departamento de Ciencias de la Vida, Laboratorio de Inmunología y Virología,, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, P.O. Box 171-5-231B, Sangolquí, Ecuador

2. Centro de Nanociencia y Nanotecnología, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, P.O. Box 171-5-231B, Sangolquí, Ecuador

3. National Institute of Public Health Research (INSPI), Quito, Ecuador

Abstract

At the northwestern edge of South America is located Ecuador. This place is a classical example of an active continental margin with widespread active volcanism. Detailed studies about the impact of volcanic ash on human health are still lacking. Therefore, the disease of exposed populations is unknown. The objective of the present investigation was to assess the biological impact of Pichincha volcanic ash on cell culture and inflammation in murine lung tissues that will contribute to the understanding of the hazards. In this study, the in vivo phase was performed in mice C57BL/6 exposed to several doses of volcanic ash (0.5, 1, and 3.75 mg/100 g mouse body weight). The body weight and survival were controlled during seven days of treatment. The expression of inflammation markers NRLP 3, caspase-1, pro-IL-1, IL-1β, IL-6, IL-8, and h-HPRT was analyzed. The in vitro phase was performed in lung cancer cells A549, peritoneal macrophages, and McCoy cells exposing them to different concentrations of volcanic ash (80, 320, and 1280 μg/cm3) to determine the cytotoxicity and the production of reactive oxygen species. The ash initiated activation of the inflammasome complex NRLP 3 and the initiation of a proinflammatory activity in the murine lung tissue depending on the concentration of this agent. The viability of A549 and McCoy cell decreased with the length of exposure and increased with the concentration of volcanic ash. The activity in superoxide dismutase decreased by about 60%, leading to the formation of reactive oxygen species. These results associated with compounds contained in Pichincha volcanic ash are considered hazardous elements which induce inflammation leading to activate inflammasome NRLP, releasing reactive oxygen species, and producing changes in cell morphology and density, all of which are expression of cytotoxicity.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3