Effects of Stator Stiffness, Gap Size, Unbalance, and Shaft’s Asymmetry on the Steady-State Response and Stability Range of an Asymmetric Rotor with Rub-Impact

Author:

Zheng Zhaoli1ORCID,Xie Yonghui2ORCID,Zhang Di1ORCID,Ye Xiaolong1ORCID

Affiliation:

1. MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

2. Shaanxi Engineering Laboratory of Turbomachinery and Power Equipment, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The asymmetric rotor and the rub-impact behavior are important sources of instability and may cause severe vibrations. However, the dynamics of the rotor-bearing system simultaneously considering the two factors has not gained sufficient attention in available investigations. In this paper, the steady-state response and stability of an asymmetric rotor with rub-impact were evaluated. The asymmetric rotor was modeled by beam elements with asymmetric cross section, and the nonlinear equations of motion were established in the rotating frame. The multiharmonic balance (MHB) method was employed to obtain the linearized form of the nonlinear equations of motion. Either the asymmetry of rotor or rub-impact can result in instability and make the problem difficult to solve. Thus, the arc-length method was utilized to trace the branch of the solutions. In order to improve the calculation speed and accurately predict the solution, the alternating frequency/time domain (AFT) was adopted to calculate the iteration of the arc-length method. Based on the proposed method, the effects of stator stiffness, gap size, unbalance, and asymmetric in shaft on the steady-state response and stability were obtained.

Funder

111 Project

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3