Fine Structure of Glycosaminoglycans from Fresh and Decellularized Porcine Cardiac Valves and Pericardium

Author:

Cigliano Antonio1,Gandaglia Alessandro2,Lepedda Antonio Junior1,Zinellu Elisabetta1,Naso Filippo2,Gastaldello Alessandra2,Aguiari Paola2,De Muro Pierina1,Gerosa Gino2,Spina Michele3,Formato Marilena1

Affiliation:

1. Dipartimento di Scienze Fisiologiche, Biochimiche e Cellulari, Università di Sassari, Viale Muroni 25, 07100 Sassari, Italy

2. Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari, Università di Padova, Viale Giustiniani 2, 35128 Padova, Italy

3. Dipartimento di Scienze Biomediche Sperimentali, Università di Padova, Viale G. Colombo 3, 35131 Padova, Italy

Abstract

Cardiac valves are dynamic structures, exhibiting a highly specialized architecture consisting of cells and extracellular matrix with a relevant proteoglycan and glycosaminoglycan content, collagen and elastic fibers. Biological valve substitutes are obtained from xenogenic cardiac and pericardial tissues. To overcome the limits of such non viable substitutes, tissue engineering approaches emerged to create cell repopulated decellularized scaffolds. This study was performed to determine the glycosaminoglycans content, distribution, and disaccharides composition in porcine aortic and pulmonary valves and in pericardium before and after a detergent-based decellularization procedure. The fine structural characteristics of galactosaminoglycans chondroitin sulfate and dermatan sulfate were examined by FACE. Furthermore, the mechanical properties of decellularized pericardium and its propensity to be repopulated by in vitro seeded fibroblasts were investigated. Results show that galactosaminoglycans and hyaluronan are differently distributed between pericardium and valves and within heart valves themselves before and after decellularization. The distribution of glycosaminoglycans is also dependent from the vascular district and topographic localization. The decellularization protocol adopted resulted in a relevant but not selective depletion of galactosaminoglycans. As a whole, data suggest that both decellularized porcine heart valves and bovine pericardium represent promising materials bearing the potential for future development of tissue engineered heart valve scaffolds.

Funder

Fondazione Banco di Sardegna

Publisher

Hindawi Limited

Subject

Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3