Unsupervised Domain Adaptation Using Exemplar-SVMs with Adaptation Regularization

Author:

He Yiwei1ORCID,Tian Yingjie234ORCID,Tang Jingjing5ORCID,Ma Yue5ORCID

Affiliation:

1. School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

2. Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China

3. Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China

4. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China

5. School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Domain adaptation has recently attracted attention for visual recognition. It assumes that source and target domain data are drawn from the same feature space but different margin distributions and its motivation is to utilize the source domain instances to assist in training a robust classifier for target domain tasks. Previous studies always focus on reducing the distribution mismatch across domains. However, in many real-world applications, there also exist problems of sample selection bias among instances in a domain; this would reduce the generalization performance of learners. To address this issue, we propose a novel model named Domain Adaptation Exemplar Support Vector Machines (DAESVMs) based on exemplar support vector machines (exemplar-SVMs). Our approach aims to address the problems of sample selection bias and domain adaptation simultaneously. Comparing with usual domain adaptation problems, we go a step further in slacking the assumption of i.i.d. First, we formulate the DAESVMs training classifiers with reducing Maximum Mean Discrepancy (MMD) among domains by mapping data into a latent space and preserving properties of original data, and then, we integrate classifiers to make a prediction for target domain instances. Our experiments were conducted on Office and Caltech10 datasets and verify the effectiveness of the model we proposed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3