Analysis and Prediction of Influence Factors of Green Computing on Carbon Cycle Process in Smart City

Author:

Huang Xianghua12ORCID,Chen Shidong12,Xiong Decheng12,Xu Chao12,Yang Zhijie12

Affiliation:

1. School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China

2. Sanming Experimental Forest, Sanming 365001, China

Abstract

Global warming has become the focus of attention of the international community, and the control of carbon dioxide emissions has become one of the necessary choices for the development strategies of countries around the world. Cities are places where carbon dioxide emissions are concentrated. The key to controlling carbon emissions is to control the carbon emissions of cities. My country is currently in the process of rapid urbanization. Quantitative studies of the carbon cycle at the city level will help to take stock of carbon dioxide emissions in cities. On the other hand, it is helpful to understand the status and role of the urban carbon cycle in the process of the regional carbon cycle. Through the analysis and prediction of the elements influencing the carbon cycle of smart cities, this paper first determines the factors affecting smart cities in the carbon cycle process as industrial carbon emission strength factors, industrial structure effects, economic development factors, and population elements. It is found that the major positive factors affecting the significant add of CO2 emissions in smart cities from 2010 to 2019 are economic development factors and demographic factors, including economic development factors GDP/per capita GDP. The per capita contribution to CO2 emissions is higher than the model established by adjusting the affecting elements of overall CO2 emissions, except that the proportion of economic development factors in total CO2 emissions from 2013 to 2015 was lower than the increase in total CO2 emissions. The comparison can better reflect the relation between CO2 emissions and influencing elements. The main determinants affecting CO2 emissions are the expansion of the financial condition, the increase in the average daily population, and the increase in construction work. The adaptation index is judged to be consistent, indicating that the model adjustment effect is good; finally, the green computing in the smart city predicts the carbon cycle process, and the actual value trend line and the predicted value trend line are not much different from the practical value, the forecast error is small, and the prediction results are credible. Global warming has become the focus of attention of the international community, and carbon emission control has become one of the necessary options in the development strategies of countries around the world. Cities are the places where carbon emissions are concentrated. The key to controlling carbon emissions is to control urban carbon emissions. At present, my country is in the process of rapid urbanization. Quantitative research on the carbon cycle at the city level will help to establish an inventory accounting of urban carbon emissions. On the other hand, it is convenient to deeply understand the status and role of the urban carbon cycle in the process of the regional carbon cycle.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference15 articles.

1. Stratus: Load Balancing the Cloud for Carbon Emissions Control

2. Cloud load balancing techniques: a step towards green computing;N. J. Kansal;International Journal of Computer Science Issues,2012

3. Sustainable IT services: assessing the impact of green computing practices[C]//Management of Engineering & Technology;R. R. Harmon

4. Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing;Keke;Journal of Network and Computer Applications,2016

5. Cloud Server Optimization with Load Balancing and Green Computing Techniques Using Dynamic Compare and Balance Algorithm[C];Y. Sahu

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3