FDCNet: Presentation of the Fuzzy CNN and Fractal Feature Extraction for Detection and Classification of Tumors

Author:

Molaei Sepideh1,Ghorbani Niloofar2ORCID,Dashtiahangar Fatemeh3,Peivandi Mohammad4ORCID,Pourasad Yaghoub5ORCID,Esmaeili Mona6

Affiliation:

1. Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran

2. High Point University, Department of Mathematical Sciences, High Point, NC, USA

3. Department of Electrical Engineering, Golestan University, Gorgan, Iran

4. Fachbereich Wirtschafts- und Rechtswissenschaften, HTW Berlin - University of Applied Sciences, Berlin, Germany

5. Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran

6. Department of Electrical and Computer Engineering, University of NM, Albuquerque, NM 8731, USA

Abstract

The detection of brain tumors using magnetic resonance imaging is currently one of the biggest challenges in artificial intelligence and medical engineering. It is important to identify these brain tumors as early as possible, as they can grow to death. Brain tumors can be classified as benign or malignant. Creating an intelligent medical diagnosis system for the diagnosis of brain tumors from MRI imaging is an integral part of medical engineering as it helps doctors detect brain tumors early and oversee treatment throughout recovery. In this study, a comprehensive approach to diagnosing benign and malignant brain tumors is proposed. The proposed method consists of four parts: image enhancement to reduce noise and unify image size, contrast, and brightness, image segmentation based on morphological operators, feature extraction operations including size reduction and selection of features based on the fractal model, and eventually, feature improvement according to segmentation and selection of optimal class with a fuzzy deep convolutional neural network. The BraTS data set is used as magnetic resonance imaging data in experimental results. A series of evaluation criteria is also compared with previous methods, where the accuracy of the proposed method is 98.68%, which has significant results.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3