Inverse Modeling of Nonlinear Artificial Muscle Using Polynomial Parameterization and Particle Swarm Optimization

Author:

Mat Dzahir Mohd Azuwan12ORCID,Yamamoto Shin-ichiroh1

Affiliation:

1. Department of Bio-science Engineering, Shibaura Institute of Technology, 307 Fukasaku Minuma-ku, Saitama 337-8570, Japan

2. Department of Applied Mechanics and Design, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Malaysia

Abstract

The properties of pneumatic artificial muscle (PAM) with excellent power-to-weight ratio and natural compliance made it useful for healthcare engineering applications. However, it has undesirable hysteresis effect in controlling a robotic manipulator. This behavior is quasistatic and quasirate dependent which changed with excitation frequency and external force. Apart from this, it also inherits frictional presliding behavior with nonlocal memory effect. These nonlinearities need to be compensated to achieve optimal performance of the control system. Even though an inverse modeling of PAM has limited application, it is important on certain control system implementation that requires the solution to the inverse problem. In this paper, the inverse modeling of PAM in the form of activation pressure was proposed. This activation pressure model was derived according to static pressure and extracted hysteresis components from pressure/length hysteresis. The derivation of the static pressure model follows the phenomenological-based model of third-order polynomial. It is capable of characterizing the nonlinear region of PAM at low and high pressure. The derivation of extracted hysteresis model follows the mechanism of dynamic friction. In this principle, the activation pressure model was dependent on regression coefficient of the static pressure model and dynamic friction coefficients of the extracted hysteresis model. The regression constants of these coefficients were characterized from the hysteresis dataset by using model parameter identification and the particle swarm optimization (PSO) method. The result from model simulation shows the root mean square error (RMSE) value of less than 10% error was evaluated at various excitation frequencies and external forces. This inverse modeling of PAM implemented a simple approach, but it should be useful in control design applications such as rehabilitation robotics, biomedical system, and humanoid robots.

Funder

Universiti Teknologi Malaysia

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PAM Actuators Applications in Robotics: Rapid Review;2023 10th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN);2023-06-05

2. Comparative Modeling Study of Pneumatic Artificial Muscle Using Neural Networks, ANFIS and Curve Fitting;2023 9th International Conference on Automation, Robotics and Applications (ICARA);2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3