Fatigue Properties Estimation and Life Prediction for Steels under Axial, Torsional, and In-Phase Loading

Author:

Zhao Ernian1ORCID,Zhou Qiang2,Qu Weilian2ORCID,Wang Wenming1ORCID

Affiliation:

1. School of Civil Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China

2. Hubei Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China

Abstract

In this study, several estimation methods of fatigue properties based on different monotonic mechanical parameters were first discussed. The advantages and disadvantages of the Hardness Method proposed by Roessle and Fatemi were investigated and improved through the analysis of a total of 92 fatigue test data. A new Segment Fitting Method from Brinell hardness was then proposed for the fatigue properties estimation, and a total of 96 pieces of fatigue test data under axial, torsional, and multiaxial in-phase loading were collected to verify the applicability of the new proposal. Finally, the prediction accuracy of the new proposal and three exciting estimation methods was compared with the predictions based on the experimental fatigue properties. Based on the results obtained, the newly proposed estimation method has a significant improvement on the relation between fatigue ductility coefficient and Brinell hardness, which consequently improves the fatigue life prediction accuracy with the scatter band of 2, particularly for the materials with low Brinell hardness. The present study can provide a simplified analysis of the preliminary fatigue design of engineering structures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3