Enhancing Satellite Clock Bias Prediction Accuracy in the Case of Jumps with an Improved Grey Model

Author:

Yu Ye12,Huang Mo,Duan Tao1ORCID,Wang Changyuan1,Hu Rui1

Affiliation:

1. Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

High accuracy and reliable predictions of the bias of in-orbit atomic clocks are crucial to the application of satellites, while their clocks cannot transfer time information with the earth stations. It brings forward a new short-term, mid-long-term, and long-term prediction approach with the grey predicting model (GM(1, 1)) improved by the least absolute deviations (GM(1, 1)-LAD) when there are abnormal cases (larger fluctuations, jumps, and/or singular points) in SCBs. Firstly, it introduces the basic GM(1, 1) models. As the parameters of the conventional GM(1, 1) model determined by the least squares method (LSM) is not the best in these cases, leading to magnify the fitting errors at the abnormal points, the least absolute deviations (LAD) is used to optimize the conventional GM(1, 1) model. Since the objective function is a nondifferentiable characteristic, some function transformation is inducted. Then, the linear programming and the simplex method are used to solve it. Moreover, to validate the prediction performances of the improved model, six prediction experiments are performed. Compared with those of the conventional GM(1, 1) model and autoregressive moving average (ARMA) model, results indicate that (1) the improved model is more adaptable to SCBs predictions of the abnormal cases; (2) the root mean square (RMS) improvement for the improved model are 5.7%∼81.7% and 6.6%∼88.3%, respectively; (3) the maximum improvement of the pseudorange errors (PE) and mean absolute errors (MAE) for the improved model could reach up to 88.30%, 89.70%, and 87.20%, 85.30%, respectively. These results suggest that our improved method can enhance the prediction accuracy and PE for these abnormal cases in SCBs significantly and effectively and deliver a valuable insight for satellite navigation.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3