Sedum sarmentosum Bunge Attenuates Drug-Induced Liver Injury via Nrf2 Signaling Pathway: An Experimental Verification Based on Network Pharmacology Prediction

Author:

Jiang Zhitao1,Han Yi1,Zhang Yuechan1,Li Jie1,Liu Chundi1ORCID

Affiliation:

1. Department of Pharmacy, Zhangjiagang Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Zhangjiagang, Suzhou, Jiangsu 215600, China

Abstract

Purpose. Using network pharmacology and in vivo experiments, we investigated the antidrug-induced liver injury components and functional processes of Sedum sarmentosum Bunge (SSBE). Methods. The effective components, primary active ingredients, and possible target in the therapy of DILI were predicted using network pharmacology and bioinformatics. APAP was inducing the DILI model. In vivo testing of the pharmacodynamic foundation of SSBE in the treatment of DILI was performed. Results. The TCMSP database evaluated five main active components and 299 related targets. In addition, 707 differential genes for DILI were obtained from the DisGeNET database, DigSee database, and OMIM database. 61 related targets were mapped to predict the targets of SSBE acting on DILI. The protein-protein interaction (PPI) core network contained 59 proteins, including IL-β, MARK14, SSP1, and MMP9. These genes are closely related to the Nrf2/ARE signaling pathway, and they may play a key role in the hepatoprotective effect of SSBE. Verification experiment results showed that, in the DILI mouse model, SSBE promoted inflammation diminution and regulation of Nrf2-ARE cascade. SSBE protected normal hepatocyte growth and inhibited apoptosis of normal liver cells induced by APAP. SSBE inhibited the expression of Nrf2 and ARE proteins in the liver tissue of the DILI mouse model in vivo. Conclusion. By modulating the Nrf2 signaling pathway, the active components in SSBE may protect against drug-induced liver damage.

Funder

Fifth Batch of Suzhou Health Talents Project

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3