Big Data and Deep Learning-Based Video Classification Model for Sports

Author:

Wang Lin1,Zhang Haiyan2ORCID,Yuan Guoliang2

Affiliation:

1. Department of Physical Education, North China University of Science and Technology, 063210 Tangshan, Hebei, China

2. College of Physical Education, Hengshui University, Hengshui, 053000 Hebei, China

Abstract

Information technologies such as deep learning, big data, cloud computing, and the Internet of Things provide key technical tools to drive the rapid development of integrated manufacturing. In recent years, breakthroughs have been made in big data analysis using deep learning. The research on the sports video high-precision classification model in this paper, more specifically, is the automatic understanding of human movements in free gymnastics videos. This paper will combine knowledge related to big data-based computer vision and deep learning to achieve intelligent labeling and representation of specific human movements present in video sequences. This paper mainly implements an automatic narrative based on long- and short-term memory networks to achieve the classification of sports videos. In the classical video description model S2VT, long- and short-term memory networks are used to learn the mapping relationship between word sequences and video frame sequences. In this paper, we introduce an attention mechanism to highlight the importance of keyframes that determine freestyle gymnastic movements. In this paper, a dataset of freestyle gymnastics breakdown movements for professional events is built. Experiments are conducted on the data and the self-constructed dataset, and the planned sampling method is applied to eliminate the differences between the training decoder and the prediction decoder. The experimental results show that the improved method in this paper can improve the accuracy of sports video classification. The video classification model based on big data and deep learning is to provide users with a better user experience and improve the accuracy of video classification. Also, in the experiments of this paper, the effect of extracting features for the classification of different lifting sports models is compared, and the effect of feature extraction network on the automatic description of free gymnastic movements is analyzed.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Utilização de tecnologia da informação no esporte: uma revisão sistemática sobre esporte 4.0;Cuadernos de Educación y Desarrollo;2024-07-17

2. UAV-Assisted Logo Inspection: Deep Learning Techniques for Real- Time Detection and Classification of Distorted Logos;2024 8th International Conference on Robotics, Control and Automation (ICRCA);2024-01-12

3. Integrating the Bigdata and Deep Learning Analysis Human Movement to Improve the Sports;2023 3rd International Conference on Advancement in Electronics & Communication Engineering (AECE);2023-11-23

4. Current Situation and Mode Innovation of Physical Education Teaching in Colleges and Universities under the Perspective of Deep Learning;Applied Mathematics and Nonlinear Sciences;2023-11-04

5. Recognition of Riding Feeling From EEG Based on Neural Network;IEEE Sensors Journal;2023-04-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3