Effect of Oblique SV Wave on the Seismic Response of Mountain Tunnel

Author:

Cao Mingxing1ORCID,Yan Songhong1ORCID,Du Jiaxuan12,Sun Weiyu12,Li Yuxiang1,Zhao Junjie1

Affiliation:

1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Key Laboratory of Road & Bridge and Underground Engineering of Gansu Province, Lanzhou 730070, China

Abstract

In order to study the dynamic response of parallel mountain tunnels under the oblique incidence of seismic waves, based on the display finite element method and using viscoelastic artificial boundary, the oblique incidence of three-way seismic waves was realized by angular incident mode. The displacement and stress distribution characteristics of the tunnel lining under different propagation angles and vibration angles of SV waves were studied. The results show that the oblique incidence of SV wave has a certain effect on the displacement of the double tunnel, the forces in the tunnel are symmetrical and the axis displacement increases with the increase of incident angle, and the vertical displacement changes greatly. The stress of the tunnel lining under the oblique incidence of the SV wave is elliptical. The peak value of the maximum principal stress appears at the maximum span on both sides, and the maximum principal stress decreases with the increase of the vibration angle. The maximum principal stress of the right tunnel is flat. The minimum principal stress of the left and right holes decreases with the increase of vibration angle, and the minimum principal stress of the left hole is 90°∼270°. The distribution of the minimum principal stress in the range is large. Mises stress increases with the increase of the incidence angle of seismic waves.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3