A Novel Damage Assessment Method for RC Beam Using Force-Hammer Excitation and Piezoelectric Sensing Technology

Author:

Yang Xia1ORCID,Zhang Minghui1,Chen Hongbing2ORCID,Hao Hong3ORCID,Kong Qingzhao1ORCID

Affiliation:

1. Department of Disaster Mitigation for Structures, Tongji University, Shanghai 200092, China

2. Research Institute of Urbanization and Urban Safety, School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. Center for Infrastructural Monitoring and Protection, School of Civil and Mechanical Engineering, Curtin University, Australia

Abstract

Concrete is the most commonly used construction material in infrastructural projects, but it may suffer from damages because of the heavy loads, fatigue, and harsh service environments. Therefore, it is crucial to detect damage for evaluating the structural conditions and providing guidance for daily maintenance and timely alarm. This paper presents a novel method for damage assessment that offers an easy-carried detection process with a large monitoring range. The proposed method involves exciting stress waves using a force-hammer and receiving them with piezoceramics pasted on the structure. The structural conditions are then evaluated using the Pearson correlation coefficient (PCC) of stress waves received from different stages. To verify the feasibility of the proposed method, a numerical model is innovatively established to study the stress wave propagation in a reinforced concrete (RC) beam with actual damage induced by the external load based on the concrete damaged plasticity (CDP) model. The experimental study is then conducted to demonstrate the effectiveness of the method and the accuracy of the numerical simulation. The numerical and experimental results show a good correlation, illustrating that the proposed method can not only effectively distinguish whether damage occurs but also determine the structural condition from the elastic phase to failure. The proposed monitoring method in this study has great potential for fast damage assessment of RC structures for both lab research and practical applications.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3