Capsules TCN Network for Urban Computing and Intelligence in Urban Traffic Prediction

Author:

Li Dazhou1ORCID,Lin Chuan2ORCID,Gao Wei1ORCID,Chen Zeying1,Wang Zeshen3,Liu Guangqi45

Affiliation:

1. College of Computer Science and Technology, Shenyang University of Chemical Technology, Shenyang 110016, China

2. Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian University of Technology, Dalian 116024, China

3. School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China

4. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China

5. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Predicting urban traffic is of great importance to smart city systems and public security; however, it is a very challenging task because of several dynamic and complex factors, such as patterns of urban geographical location, weather, seasons, and holidays. To tackle these challenges, we are stimulated by the deep-learning method proposed to unlock the power of knowledge from urban computing and proposed a deep-learning model based on neural network, entitled Capsules TCN Network, to predict the traffic flow in local areas of the city at once. Capsules TCN Network employs a Capsules Network and Temporal Convolutional Network as the basic unit to learn the spatial dependence, time dependence, and external factors of traffic flow prediction. In specific, we consider some particular scenarios that require accurate traffic flow prediction (e.g., smart transportation, business circle analysis, and traffic flow assessment) and propose a GAN-based superresolution reconstruction model. Extensive experiments were conducted based on real-world datasets to demonstrate the superiority of Capsules TCN Network beyond several state-of-the-art methods. Compared with HA, ARIMA, RNN, and LSTM classic methods, respectively, the method proposed in the paper achieved better results in the experimental verification.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3