A Novel Approach Based on Generative Adversarial Network for Signal Enhancement in Wireless Communications

Author:

He Shoushuai1ORCID,Zhu Lei1ORCID,Yao Changhua2ORCID,Wang Lei1ORCID,Qin Zhen1ORCID

Affiliation:

1. College of Communications Engineering, Army Engineering University, Nanjing 210007, China

2. School of Electronic and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Wireless communication signals are often affected by noise and interference in the channel during transmission, which makes it difficult for the receiver to analyze. The signal enhancement technology can suppress the noise and interference in the signal, so as to improve the communication quality. It is one of the main research directions of signal processing. Classical enhancement methods separate the signals through separable transform domain. Artificial construction of the corresponding separable transform domain requires prior information of noise and interference, but they have the characteristics of randomness. Further, these methods usually use high-level features and rely on statistics, so they can only deal with specific noise conditions. At present, deep learning is increasingly applied in the field of wireless communications due to its powerful feature extraction ability for large sample sets. In this paper, a communication signal enhancement model based on generative adversarial network (GAN) is proposed. Compared with classical methods, the signal is operated directly and the model is trained end-to-end. It can adapt to different noise conditions and avoid the above problems. An independent and invisible test set is used to evaluate several comparative methods. The experimental results confirm the effectiveness of the proposed model.

Funder

Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3