Interpretable Model Based on Pyramid Scene Parsing Features for Brain Tumor MRI Image Segmentation

Author:

Zhao Mingyang1ORCID,Xin Junchang23ORCID,Wang Zhongyang1ORCID,Wang Xinlei2ORCID,Wang Zhiqiong145ORCID

Affiliation:

1. College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China

2. School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China

3. Key Laboratory of Big Data Management and Analytics (Liaoning Province), Northeastern University, Shenyang 110169, China

4. Institute of Intelligent Healthcare Technology, Neusoft Corporation, Ltd., Shenyang 110179, China

5. Acoustics Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China

Abstract

Due to the black box model nature of convolutional neural networks, computer-aided diagnosis methods based on depth learning are usually poorly interpretable. Therefore, the diagnosis results obtained by these unexplained methods are difficult to gain the trust of patients and doctors, which limits their application in the medical field. To solve this problem, an interpretable depth learning image segmentation framework is proposed in this paper for processing brain tumor magnetic resonance images. A gradient-based class activation mapping method is introduced into the segmentation model based on pyramid structure to visually explain it. The pyramid structure constructs global context information with features after multiple pooling layers to improve image segmentation performance. Therefore, class activation mapping is used to visualize the features concerned by each layer of pyramid structure and realize the interpretation of PSPNet. After training and testing the model on the public dataset BraTS2018, several sets of visualization results were obtained. By analyzing these visualization results, the effectiveness of pyramid structure in brain tumor segmentation task is proved, and some improvements are made to the structure of pyramid model based on the shortcomings of the model shown in the visualization results. In summary, the interpretable brain tumor image segmentation method proposed in this paper can well explain the role of pyramid structure in brain tumor image segmentation, which provides a certain idea for the application of interpretable method in brain tumor segmentation and has certain practical value for the evaluation and optimization of brain tumor segmentation model.

Funder

Open Program of Neusoft Corporation

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3