Elimination of Harmonics in Multilevel Inverter Using Multi-Group Marine Predator Algorithm-Based Enhanced RNN

Author:

Krithiga G.1ORCID,Mohan V.1ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, E.G.S. Pillay Engineering College, Nagapattinam, Tamilnadu, India

Abstract

Multilevel inverters (MLI) are becoming more common in different power applications, such as active filters, elective vehicle drives, and dc power sources. The Multi-Group Marine Predator Algorithm (MGMPA) is introduced in this study for resolving transcendental nonlinear equations utilizing an MLI in a selective harmonic elimination (SHE) approach. Its applicability and superiority over various SHE approaches utilized in recent research may be attributed to its high accuracy, high likelihood of convergence, and improved output voltage quality. For the entire modulation index, the optimum switching angles (SA) from Marine Predator Algorithm (MPA) is utilized to control a three-phase 11-level MLI employing cascaded H-bridge (CHB) architecture to regulate the vital element and eliminate the harmonics. The limitation of SHE is that it is difficult to find solutions for nonlinear equations. As a result, specific optimization approaches must be used. Artificial Intelligence (AI) algorithms can handle such a nonlinear transcendental equation successfully, although their time consumption as well as convergence abilities vary. Here, recurrent neural network (RNN) is considered where the hidden neurons are tuned by MGMPA with the intention of harmonic distortion parameter (HDP) minimization, thus called as enhanced recurrent neural network (ERNN). The method’s resilience and consistency are demonstrated by simulation and analytical findings. The MGMPA method is more effective and appropriate than various algorithms including the MPA, Harris Hawks optimization (HHO), and Whale optimization algorithm (WOA), according to simulation data.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3