Arrangements of Resting State Electroencephalography as the Input to Convolutional Neural Network for Biometric Identification

Author:

Lai Chi Qin1,Ibrahim Haidi1ORCID,Abdullah Mohd Zaid1ORCID,Abdullah Jafri Malin2ORCID,Suandi Shahrel Azmin1ORCID,Azman Azlinda3

Affiliation:

1. School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

2. Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia

3. School of Social Sciences, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia

Abstract

Biometric is an important field that enables identification of an individual to access their sensitive information and asset. In recent years, electroencephalography- (EEG-) based biometrics have been popularly explored by researchers because EEG is able to distinct between two individuals. The literature reviews have shown that convolutional neural network (CNN) is one of the classification approaches that can avoid the complex stages of preprocessing, feature extraction, and feature selection. Therefore, CNN is suggested to be one of the efficient classifiers for biometric identification. Conventionally, input to CNN can be in image or matrix form. The objective of this paper is to explore the arrangement of EEG for CNN input to investigate the most suitable input arrangement of EEG towards the performance of EEG-based identification. EEG datasets that are used in this paper are resting state eyes open (REO) and resting state eyes close (REC) EEG. Six types of data arrangement are compared in this paper. They are matrix of amplitude versus time, matrix of energy versus time, matrix of amplitude versus time for rearranged channels, image of amplitude versus time, image of energy versus time, and image of amplitude versus time for rearranged channels. It was found that the matrix of amplitude versus time for each rearranged channels using the combination of REC and REO performed the best for biometric identification, achieving validation accuracy and test accuracy of 83.21% and 79.08%, respectively.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3