Mechanistic Investigation of Curcuma Protection against Oral Submucous Fibrosis

Author:

Peng Haiyan12,Jiang Xiaowen12ORCID,Cui Linna12,Zhu Yali12,Ye Zhikui12,Zhang Zhiming12

Affiliation:

1. Department of Stomatology, The First People’s Hospital of Chenzhou, the First Affiliated Clinical Medical College, Xiangnan University, Chenzhou, China

2. Department of Oral and Maxilofacial Surgery, The Stomatology College, Southern Medical University, Guangzhou, China

Abstract

Objective. Oral submucous fibrosis (OSMF) is a chronic, fibrotic disease that affects the oral cavity, showing a high rate of malignant transformation. Curcuma exerts therapeutic potentials in many diseases including OSMF. However, the potential targets and pathways to explain the therapeutic effects of curcuma on OSMF are outside the scope of present knowledge. Herein we intend to reveal the predictive targets and potential pathways of curcuma against OSMF by a network pharmacology-based approach followed by molecular docking technology. Methods. We searched the SymMap, GeneCards, and OMIM database to obtain curcuma and OSMF common targets. The protein-protein interaction (PPI) of curcuma and OSMF common targets were then analyzed, followed by functional enrichment analysis. The best binding mode of curcuma and target proteins was analyzed by molecular docking technology. Results. We collected 290 putative targets of curcuma molecules and 600 known therapeutic targets of OSMF, with 64 curcuma and OSMF common targets sorted out. In the PPI network, there were 63 nodes with 922 edges. The node indicates protein and the line indicates PPI relation. The most enriched GO term in the BP level is “gland development”, followed by “cellular response to chemical stress”, and then “response to oxygen levels”, while the most enriched GO term in CC and MF is “membrane raft” and “cytokine receptor binding”, respectively. We also found 131 KEGG pathways significantly enriched by curcuma and OSMF common targets. The binding energy of curcuma to ALB, TNF, TP53, IL6, and VEGFA was −9.5 kcal/mol, −3.9 kcal/mol, −3.5 kcal/mol, −3.6 kcal/mol, and −8.9 kcal/mol, respectively, which suggested ALB and VEGFA were regarded as main targets involving in the potential mechanism of curcuma against OSMF. Conclusion. The present study illustrated that the therapeutic effects of curcuma on OSMF were achieved by targeting ALB and VEGFA, which giving reference to further drug design and development for OSMF.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3