Effect of MoS2 Yolk-Shell Nanostructure on the Thiophene Separation Performance of PEG Membrane

Author:

Hou Ziman1ORCID,Peng Ping12ORCID,Lan Yongqiang1ORCID,Wu Zihui1ORCID,Wang Jianhua12ORCID

Affiliation:

1. Laboratory of Membrane Science and Technology, School of Resource and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China

2. Science and Technology on Sanming Institute of Fluorochemical Industry, Sanming, Fujian, 365004, China

Abstract

Constructing facilitated transport based on π-complexation has been drawing more and more attention in mixed matrix membranes (MMMs) for pervaporative desulfurization. Herein, a unique molybdenum disulfide (MoS2) yolk-shell nanostructure (MYNS) was prepared and incorporated into the polyethylene glycol (PEG) matrix to fabricate MMMs for model gasoline desulfurization by PV. Moreover, the effects of MYNS content, feed sulfur concentration, and feed temperature on the performance of PEG/MYNS MMMs were evaluated. It was found that there is good interfacial compatibility between the MYNS filler and the PEG matrix, and the resultant MMMs show enhanced swelling resistance against thiophene. The PV results revealed that the as-fabricated MMMs are thiophene-selective, and their desulfurization performance in the pervaporative removal of thiophene from n-octane is remarkably evaluated due to the addition of MYNS. The MMMs display the highest sulfur enrichment factor of 4.02 with an associated permeation flux of 2587 g·m−2·h−1 with the MYNS loading of 3 wt. % when carrying out in an n-octane and thiophene (500 μg·g−1) mixture at 343 K. Furthermore, a consistent increment in the permeation flux accompanied with a continuous reduction in the enrichment factor was observed with increasing the feed sulfur concentration and feed temperature. This work may offer great potential for practical gasoline desulfurization applications.

Funder

Scientific Research Foundation for Introducing Talent of Sanming University

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3