MicroRNA-1306-5p Regulates the METTL14-Guided m6A Methylation to Repress Acute Myeloid Leukemia

Author:

Li Jiajia1ORCID,Wu Yanping1,Wang Meng1,Chen Xiaofeng1,Li Zhongyu1,Bai Xue1,Wu Haotian2

Affiliation:

1. Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China

2. Bengbu Medical College, Bengbu, Anhui, China

Abstract

miRNA and m6A methylation are two key regulators in cancers. However, in acute myeloid leukemia (AML), the relationship of miRNA and m6A methylation remains unclear. The present work is aimed at determining the effect of m6A methylation induced by miRNAs on AML and its underlying mechanism. The expression of METTL14 was detected by qRT-PCR and western blot. The growth of HL-60 cells was analyzed by CCK-8, Transwell assay, and flow cytometry. Tumor-bearing mice were established, and Ki-67 staining assay was used to detect the proliferation in vivo. Dual luciferase reporter system detected the effect of miR-1306-5p on METTL14 luciferase activity. Dot blot analysis detected m6A methylation. We found that METTL14 was upregulated in AML patients and overexpressed METTL14 promoted AML development. Further analysis indicated that METTL14 was directly targeted by miR-1306-5p and overexpressed miR-1306-5p alleviated AML progression. In addition, m6A methylation level regulated by METTL14 could be affected by miR-1306-5p. In conclusion, we found that suppressed miR-1306-5p enhanced AML progression by elevating m6A methylation level via upregulating METTL14. These findings provided basis for the development of new strategies for treating AML.

Funder

National University Student Innovation and Entrepreneurship Project

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3