A Novel Space Large Deployable Paraboloid Structure with Power and Communication Integration

Author:

Zheng Tao1ORCID,Fei Zheng1,Rui Xi1,Yan Lide1

Affiliation:

1. Department of Electronic Mechanism, School of Mechano-Electronic Engineering, Xidian University, Xi’an, Shaanxi 710071, China

Abstract

The combination of a solar array and a communication antenna can reduce the entire mass, physical size, and cost in space applications. Currently, related studies mainly focus on the combination of the two structures on the one flat plate structure (FPS). Compared with the FPS, a paraboloid structure has a lower surface density and higher conversion efficiency. Therefore, a novel space large deployable paraboloid structure with power and communication integration (SSPCI) is proposed and designed in detail, for spacecraft on a sun synchronous earth orbit; it consists of a cable mesh membrane reflector (CMMR), an energy conversion device (ECD), and a three-extensible-rod (TER) pointing mechanism. To achieve the goal of integrating power and communication, the TER pointing mechanism drives the CMMR/ECD to track the sun in the sunshine region or to turn to face the ground station/other target in the Earth’s shadow region. Then, through simulation analyses of the deploying process, static force at a limit orientation, and sun tracking process of the SSPCI, it is proved that the SSPCI is feasible and has satisfactory performance. Finally, deploying experiments of the folded hoop of the CMMR and sun tracking experiments of the TER pointing mechanism on the ground were carried out successfully, which proves that the folded hoop can be deployed successfully with fairly high deploying dependability, and the TER pointing mechanism is feasible for the SSPCI from the mechanism principle and the control mode in space applications indirectly. Moreover, the tracking accuracy of the TER pointing mechanism is estimated to be within ±0.4° although the machining precision of its components is not high.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3