Integrated Bioinformatics Identifies FREM1 as a Diagnostic Gene Signature for Heart Failure

Author:

Jiang Chenyang1ORCID,Jiang Weidong2ORCID

Affiliation:

1. The First Clinical Medical College of Guangxi Medical University, Nanning 530021, China

2. Department of Cardiology, Nantong Hospital of Traditional Chinese Medicine, Nantong 226000, China

Abstract

Objective. This study is aimed at integrating bioinformatics and machine learning to determine novel diagnostic gene signals in the progression of heart failure disease. Methods. The heart failure microarray datasets and RNA-seq datasets have been downloaded from the public database. Differentially expressed genes (DE genes) are screened out, and then, we analyze their biological functions and pathways. Integrating three machine learning methods, the least absolute shrinkage and selection operator (LASSO) algorithm, random forest (RF) algorithm, and support vector machine recursive feature elimination (SVM-RFE) are used to determine candidate diagnostic gene signals. Then, external independent RNA-seq datasets evaluate the diagnostic value of gene signals. Finally, the convolution tool CIBERSORT estimated the composition pattern of immune cell subtypes in heart failure and carried out a correlation analysis combined with gene signals. Results. Under the set threshold, we obtained 47 DE genes with the most significant differences. Enrichment analysis shows that most of them are related to hypertrophy, matrix structural constituent, protein binding, inflammatory immune pathway, cardiovascular disease, and inflammatory disease. Three machine learning methods assisted in determining the potential characteristic signals Fras1-related extracellular matrix 1 (FREM1) and meiosis-specific nuclear structural 1 (MNS1). Validation of external datasets confirms that FREM1 is a diagnostic gene signal for heart failure. Immune cell subtypes of tissue specimens found T cell CD8, mast cell resting, T cell CD4 memory resting, T cell regulation (Tregs), monocytes, macrophages M2, T cell CD4 naive, macrophages M0, and neutrophils are associated with HF. Conclusion. The gene signal FREM1 may be a potential molecular target in the development of HF and is related to the difference in immune infiltration of HF tissue.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3