Affiliation:
1. School of Information Engineering, Suzhou University, Suzhou, Anhui 234000, China
Abstract
For the problems of unreasonable computation offloading and uneven resource allocation in Mobile Edge Computing (MEC), this paper proposes a task offloading and resource allocation strategy based on deep learning for MEC. Firstly, in the multiuser multiserver MEC environment, a new objective function is designed by combining calculation model and communication model in the system, which can shorten the completion time of all computing tasks and minimize the energy consumption of all terminal devices under delay constraints. Then, based on the multiagent reinforcement learning system, system benefits and resource consumption are designed as rewards and losses in deep reinforcement learning. Dueling-DQN algorithm is used to solve the system problem model for obtaining resource allocation method with the highest reward. Finally, the experimental results show that when the learning rate is 0.001 and discount factor is 0.90, the performance of proposed strategy is the best. Furthermore, the proportions of reducing energy consumption and shortening completion time are 52.18% and 34.72%, respectively, which are better than other comparison strategies in terms of calculation amount and energy saving.
Funder
Key Disciplines of Computer Science and Technology
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献