Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing

Author:

Yu Zijia1ORCID,Xu Xu1ORCID,Zhou Wei1ORCID

Affiliation:

1. School of Information Engineering, Suzhou University, Suzhou, Anhui 234000, China

Abstract

For the problems of unreasonable computation offloading and uneven resource allocation in Mobile Edge Computing (MEC), this paper proposes a task offloading and resource allocation strategy based on deep learning for MEC. Firstly, in the multiuser multiserver MEC environment, a new objective function is designed by combining calculation model and communication model in the system, which can shorten the completion time of all computing tasks and minimize the energy consumption of all terminal devices under delay constraints. Then, based on the multiagent reinforcement learning system, system benefits and resource consumption are designed as rewards and losses in deep reinforcement learning. Dueling-DQN algorithm is used to solve the system problem model for obtaining resource allocation method with the highest reward. Finally, the experimental results show that when the learning rate is 0.001 and discount factor is 0.90, the performance of proposed strategy is the best. Furthermore, the proportions of reducing energy consumption and shortening completion time are 52.18% and 34.72%, respectively, which are better than other comparison strategies in terms of calculation amount and energy saving.

Funder

Key Disciplines of Computer Science and Technology

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3