Temporal and Spatial Change Monitoring of Drought Grade Based on ERA5 Analysis Data and BFAST Method in the Belt and Road Area during 1989–2017

Author:

Xue Changdi1ORCID,Wu Hua123ORCID,Jiang Xiaoguang14

Affiliation:

1. University of Chinese Academy of Sciences, Beijing 100049, China

2. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

4. Key Laboratory of Quantitative Remote Sensing Information Technology, Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Drought is a worldwide natural disaster with a wide range of influences and a long duration, which has a huge impact on the agricultural production activities and social economy of local residents. The Belt and Road Initiative has always received much attention due to its special geographical location and great potential for economic development. At the same time, the Belt and Road region is also deeply affected by drought, especially in some countries and regions, where the agricultural infrastructure is weak and the ecological environment is fragile. How to effectively monitor and evaluate drought has become an urgent problem to be solved. In this study, the ERA5 atmospheric reanalysis data were used, and the self-calibrating Palmer Drought Severity Index was combined with Breaks for Additive Seasonal and Trend (BFAST) to study the temporal and spatial distribution of the 1989–2017 monthly scale of drought in different climate regions of the Belt and Road region. The results show that the overall change trend of arid area shows a change of “up-down-up-down.” The winter drought area is larger than the summer drought area, and the drought center gradually moves from the Southeast Asia region in winter to the West–Central Asia region in summer. In the past five years, the drought area decreased gradually at the rate of approximately 0.38 million km2 per year.

Funder

Chinese Academy of Sciences

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3