Affiliation:
1. Department of Physics, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145, India
2. Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
Abstract
The present study explains the behaviour of nanomaterials such as AlN, CdSe, Ge, WC, and Ni- and Fe-filled-MWCNTs under high pressure. Among the number of isothermal EOSs available, we prefer only two parameter-based isothermal equations (i.e., Murnaghan equation, usual Tait's equation, Suzuki equation and Shanker equation). The present work shows the theoretical study of thermo-elastic properties especially relative compression (V/V0), isothermal bulk modulus (KP/K0), and compressibility (αP/α0) of nanomaterials. After comparing all formulations with available experimental data, we conclude that pressure dependence of relative compression (V/V0) for the nanomaterials, are in good agreement for all the equations at lower pressure range. At higher pressure range, Suzuki and Shanker formulations show some deviation from experimental values.
Subject
General Physics and Astronomy